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Spatio-temporal models have become key tools for evaluating population trends and habitat usage. We developed a spatio-temporal model-
ling framework employing a combination of encounter/non-encounter, count, and biomass data collected by different monitoring programs
(“combined data”). The three data types are predicted using a computationally efficient approximation to a compound Poisson-gamma pro-
cess. We fitted spatio-temporal models to combined data for Gulf of Mexico (GOM) red snapper (Lutjanus campechanus) for 2006–2014.
These spatio-temporal models provided insights into GOM red snapper spatial distribution patterns, which we corroborated by comparing to
past predictions generated using only encounter/non-encounter data. However, relying on biomass and count data in addition to encounter/
non-encounter data also allowed us to reconstruct biomass trends for GOM red snapper and to examine patterns of distribution shifts and
range expansion/contraction for this population for the first time. Moreover, combining multiple data types improved the precision of recon-
structed population trends and some variables quantifying habitat usage. Finally, scenarios and simulation experiments conditioned upon red
snapper data showed that the improvement in fitting to combined data is greater when biomass data for the study population are lacking for
an entire subregion and, to a lesser extent, for an entire time period (e.g. in early years).

Keywords: data-integrated models, habitat assessments, habitat usage, population assessments, population trends, red snapper (Lutjanus cam-
pechanus), simulation experiment, spatio-temporal models, state-space models.

Introduction
Ecologists are tasked with conducting population and habitat

assessments for supporting resource management, using the best

available data and models. For example, terrestrial ecologists

carry out assessments of red deer (Cervus elaphus) populations to

inform culling strategies in Scotland (Trenkel et al., 2000) and de-

termine the spatial abundance patterns of the invasive barred owl

(Strix varia) population to guide spatial conservation plans in the

Pacific Northwest, United States (Rossman et al., 2016). Another

example is that of US marine ecologists who assist resource man-

agers implementing the Magnuson-Stevens Fishery Conservation

and Management Act (MSRA, 2006). The Magnuson-Stevens

Fishery Conservation and Management Act requires the regular

update of harvest limits based on the population assessments of

the target species, commonly termed “stock assessments”

(Federal Register, 2008); and the designation of essential fish hab-

itat based on scientific information on the spatial distribution

patterns of juveniles and spawners of the species of interest

(Rosenberg et al., 2000).

State-space models, which consider both hidden population

dynamics and uncertainties in the observation process (Schnute,

1994), are key tools for supporting population and habitat assess-

ments. In the terrestrial world, they have been used, for instance,

to understand the population trends and spatial distribution pat-

terns of barred owl in the Pacific Northwest (Rossman et al.,

2016; Zipkin et al., 2017). In the marine world, spatio-temporal

models, state-space models that account for spatial and spatio-

temporal structure at a fine scale, are increasingly being employed
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to standardize sample count and biomass data (Berg et al., 2014;

Thorson et al., 2015; Cao et al., 2017; Grüss, Walter, et al., 2019)

and reconstruct population age/length structures from subsam-

pling data (Thorson and Haltuch, 2018) for informing popula-

tion assessments; and to map nursery and spawning habitats (Kai

et al., 2017; Grüss, Biggs, et al., 2018) and estimate patterns of

distribution shifts and range expansion/contraction (Thorson,

Pinsky, et al., 2016; Thorson, Rindorf, et al., 2016) for assisting

habitat assessments.

One major challenge for terrestrial and marine scientists is that

individual datasets often do not provide sufficient information to

conduct satisfactory ecological investigations (Schaub and Abadi,

2011; Grüss et al., 2017). To remedy this issue in the terrestrial

world, integrated population models (IPMs) have been designed

(Schaub and Abadi, 2011). IPMs are state-space models that carry

out a joint analysis of multiple datasets on different quantities.

Inference with IPMs relies on the joint likelihood, which can be

constructed only if the individuals included in the different data-

sets can be assumed to have the same demography and if the like-

lihoods for the individual datasets have parameters in common

(Maunder, 2004; Schaub and Abadi, 2011). The advantages of us-

ing IPMs instead of models fitted to individual datasets on partic-

ular quantities are manifold. Importantly, with IPMs, more of the

information provided by individual datasets can be exploited,

resulting in the estimation of a larger number of demographic

quantities, as well as in more precise estimates for individual de-

mographic quantities (Brooks et al., 2004; Schaub et al., 2007;

Abadi et al., 2012; Zipkin et al., 2017). Simulation experiments

also found that employing IPMs led to more accurate estimates

of population abundance and demographic rates (Dorazio, 2014;

Zipkin et al., 2017). IPMs have long focused on the joint analysis

of capture–recapture data and other data types such as telemetry

data and fecundity estimates (Lebreton et al., 1995; Abadi et al.,

2012; Wilson et al., 2016). More recently, IPMs referred to as

“dynamic N-mixture models” have considered a combination of

multiple “unmarked” data types such as detections/non-

detections (i.e. encounters/non-encounters) and quadrat counts

(Dail and Madsen, 2011; Dorazio, 2014; Zipkin et al., 2017).

In the marine world, the spatio-temporal models developed

for supporting population and habitat assessments have, in gen-

eral, analysed individual datasets separately (Berg et al., 2014;

Thorson, Rindorf, et al., 2016; Kai et al., 2017; Thorson et al.,

2017). Exceptions to this general pattern include spatio-temporal

modelling studies that combined encounter/non-encounter

(Grüss et al., 2017, Grüss, Biggs, et al., 2018; Grüss, Drexler, et al.,

2018; Grüss, Perryman, et al., 2018; Grüss, Thorson, et al., 2018),

count (Runnebaum et al., 2018) or biomass (Dolder et al., 2018;

Perretti and Thorson, 2019) data collected by different monitor-

ing programs. In all cases, differences in detection probability us-

ing samples from different sampling programs were accounted

for through a coefficient representing differences in capture effi-

ciency. For example, Grüss et al. (2017) and Grüss, Perryman,

et al. (2018) compiled a large monitoring database for the US

Gulf of Mexico (GOM) storing the encounter/non-encounter

data collected by different fisheries-independent and fisheries-

dependent programs employing random sampling schemes, and

the authors then fitted spatio-temporal models to the large moni-

toring database to be able to map the spatial distributions of fish

and invertebrate species groups, species, and life stages. Without

this large endeavour, it would not have been possible to map the

spatial distributions of many species and life stages at the scale of

the entire US GOM, because the spatial footprint of individual

monitoring programs would have been insufficiently small (Grüss

et al., 2017; Grüss, Perryman, et al., 2018). However, a more com-

prehensive use of the information provided by monitoring data

would substantially benefit population and habitat assessments.

More specifically, fitting spatio-temporal models to a combina-

tion of encounter/non-encounter, count and biomass data col-

lected by different monitoring programs would allow for the

reconstruction of population trends to inform population assess-

ments, and for the estimation of patterns of distribution shifts

and range expansion/contraction to assist habitat assessments

(Grüss, Perryman, et al., 2018).

In this study, we draw inspiration from the IPMs designed for

terrestrial studies to develop a spatio-temporal modelling frame-

work using a combination of encounter/non-encounter, count,

and biomass data (henceforth “combined data”). Our primary

goal is to explore the impacts of employing combined data (i.e. a

“data-integrated model”) vs. biomass-only data (i.e. a conven-

tional model in fisheries analyses) for informing population and

habitat assessments. In the following, we specify the state-process

and observation components of our spatio-temporal models and

then describe parameter estimation. Next, we examine the predic-

tions, precision, accuracy, error, and confidence interval coverage

of spatio-temporal models fitted to combined data for GOM red

snapper (Lutjanus campechanus) for the period 2006–2014, in

three steps. First, we conduct a comparison of the population

trends and patterns of distribution shifts and range expansion/

contraction and their uncertainty predicted by a spatio-temporal

model fitted to combined vs. biomass-only data. Second, because

many fish and invertebrate populations (hereafter simply referred

to as “fish populations”) are not adequately sampled compared to

GOM red snapper, we repeat this comparison under two

“extreme” scenarios: a “spatial” scenario, where all the biomass

data except for 98% of those for the northwestern Gulf of Mexico

(NWGOM) are considered; and a “temporal” scenario, where all

the biomass data except for 98% of those for the period 2006–

2008 are considered. Third, we use a simulation experiment to

evaluate the accuracy, error, and confidence interval coverage of

the population trends predicted by the spatio-temporal model fit-

ted to combined data, when biomass data are either collected or

not collected in the NWGOM or when biomass data are either

collected or not collected in early years.

Methods
Model specifications
Our model is a spatio-temporal Poisson-link delta model

(Thorson, 2018a), where state variables include both the

numbers-density of the species of interest, n s; tð Þ, and the

biomass-per-individual of this species, w s; tð Þ, at each site s and

year t. The product of these two quantities gives the biomass-

density of the species of interest, d s; tð Þ, at each site s and year t.

In the marine environment, it is common to sample biomasses,

employing, e.g. trawls, seines, or traps (Grüss, Perryman, et al.,

2018). Many monitoring programs also collect count data using,

e.g. longlines, vertical lines, or video cameras. Monitoring pro-

grams that specifically aim to record encounters/non-encounters

are rare since any sampling protocol usually allows one to obtain

at least counts (e.g. video cameras, visual censuses). However, the

counts or biomasses collected by monitoring programs are often

converted into encounters/non-encounters for fitting species

Developing spatio-temporal models 1749
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distribution models to a blending of data coming from different

surveys (Grüss et al., 2017; Pirtle et al., 2017; Grüss, Perryman, et

al., 2018), or for developing conventional two-stage, delta models

(combining, e.g. a binomial model fitted to encounter/non-

encounter data and a quasi-Poisson model fitted to count data;

Grüss et al., 2014, 2016).

Encounter/non-encounter data R can take the value 0 (not

encountered) or 1 (encountered). When fitting to encounter/

non-encounter data, we assume that the spatial distribution of

individuals in the neighbourhood of sampling is random, such

that the probability to encounter at least one individual follows a

Poisson distribution with intensity equal to local numbers-

densities times area sampled. This results in a Bernoulli distribu-

tion with an encounter probability pðiÞ using a complementary

log–log link function given log numbers-density, log n s; tð Þð Þ:

R � Bernoulli
�

pðiÞ
�

pðiÞ ¼ 1� exp
�
� ainðsi; tiÞ

�
;

(1)

where ai is the area sampled for sample i, in km2 (e.g. the area

swept if sample i was collected by a trawl survey).

Count data C can take any positive integer. When fitting to

count data, we again assume that individuals are randomly dis-

tributed in the proximity of sampling. This results in a Poisson

distribution for count data, with intensity equal to local

numbers-density times area sampled. However, count samples

are frequently overdispersed relative to predictions of local den-

sity. We, therefore, expand our model to estimate the magnitude

of overdispersion using a lognormal-Poisson distribution:

C � Poisson
�
kðiÞ

�
kðiÞ ¼ ainðsi ; tiÞ � edðiÞ;

(2)

where d ið Þ � Normalð0;r2
obsÞ is a random effect representing

normally distributed overdispersion with variance r2
obs.

Biomass-sampling data B can take any non-negative real num-

ber. When fitting to biomass-sampling data, we employ a

Poisson-link delta model and follow Thorson (2018a) in defining

a probability of encounter pðiÞ [Equation (1)] and the expected

biomass given that the species is encountered ri (subsequently

called “positive catch rate”). The product of these two variables is

equal to expected biomass-density, EðdÞ ¼ p � r , and is also

equal to the product of numbers-density n and biomass-per-

individual w. We can, therefore, calculate positive catch rate as:

r ið Þ ¼ n si ; tið Þ
p ið Þ

w si ; tið Þ: (3)

We can, then, define a delta model for biomass-samples:

Pr b ið Þ ¼ Bð Þ ¼ 1� pðiÞ if B ¼ 0

pðiÞ � gðBjrðiÞ; r2
obsÞ if B > 0;

�
(4)

where g Bjr ið Þ;r2
obs

� �
is the gamma probability density function

for unexplained variation in r ið Þ; and r2
obs is residual biomass

sampling variation.

Thus, using a Poisson-link delta model allows the likelihoods

for encounter/non-encounter, count and biomass datasets to

have parameters in common [Equations (1)–(4)]. As a result,

when multiple data types are provided to our spatio-temporal

model, it is straightforward to calculate the likelihood of the

observation-process equations as the product of the likelihoods

for encounter/non-encounter, count, and biomass datasets

(Schaub and Abadi, 2011; Dorazio, 2014).

Fitting biomass, count, and/or encounter/non-encounter data

to our spatio-temporal model allows for the estimation of

numbers-density and biomass-per-individual:

log
�

nðsi; tiÞ
�
¼ bnðtiÞ þ xnðsiÞ þ enðsi; tiÞ þ

Xnm

m¼1

cmGði;mÞ

log
�

wðsi ; tiÞ
�
¼ bwðtiÞ þ xwðsiÞ þ ewðsi ; tiÞ;

(5)

where bn tið Þ and bw tið Þ are intercepts for the year ti in which sample

i was collected, which are both estimated as fixed effects; xn sið Þ and

xw sið Þ represent spatial variation and are both estimated as random

effects; en si; tið Þ and ew si ; tið Þ represent spatio-temporal variation

and are both estimated as random effects; nm is the total number of

monitoring programs considered; and
Pnm

m¼1 cmG i;mð Þ is the effect

of monitoring programs on the expected number of individuals sam-

pled, which is turned off if only one monitoring program provides

data to the model (i.e. if nm ¼ 1). The design matrix G i;mð Þ is such

that G i;mð Þ is 1 for the monitoring program m that collected sam-

ple i and 0 otherwise, and the monitoring program effect cm is such

that cm ¼ 0 for the monitoring program m associated with the larg-

est sample size to allow for the identifiability of all bn parameters.

We treat the effect of monitoring programs as fixed here, although

future studies could treat it as random via the implementation of re-

stricted maximum likelihood (Grüss et al., 2017; Grüss, Perryman, et

al., 2018). Moreover, Equation (5) could include environmental

covariates, but we do not consider this option here and leave it for

future research.

The spatial and spatio-temporal variation terms are all as-

sumed to follow a multivariate normal distribution:

xn � MVN
�

0;r2
nxRðjnÞ

�
enðtÞ � MVN

�
0;r2

neRðjnÞ
�

xw � MVN
�

0;r2
wxRðjwÞ

�
ewðtÞ � MVNð0; r2

weRðjwÞÞ;

(6)

where R jnð Þ is the correlation among sites as a function of decor-

relation distance jn; R jwð Þ is the correlation among sites as a

function of decorrelation distance jw ; r2
nx and r2

wx are the

estimated pointwise variances of the spatial variation in numbers-

density and biomass-per-individual, respectively; and r2
ne and r2

we
are the estimated pointwise variances of the spatio-temporal vari-

ation in numbers-density and biomass-per-individual, respec-

tively. All spatial and spatio-temporal variation terms are

estimated using Gaussian Markov random fields (Thorson et al.,

2015).

Parameter estimation
As is the case for any state-space model, the joint likelihood of

our spatio-temporal model fitted to individual data types (en-

counter/non-encounter, count, or biomass data) is the product of

1750 A. Grüss and J. T. Thorson
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the likelihoods of the state-process and observation-process equa-

tions (Maunder, 2004). When our model is fitted to multiple

types of data simultaneously, the likelihoods for encounter/non-

encounter, count, and biomass datasets have parameters in com-

mon [Equations (1)–(4)], so that the likelihood of the

observation-process equations is the product of the likelihoods

for encounter/non-encounter, count, and biomass datasets

(Schaub and Abadi, 2011; Dorazio, 2014). However, this is allow-

able only if the encounter/non-encounter, count, and biomass

datasets can be assumed to be statistically independent and if the

individuals included in these different datasets can be assumed to

belong to the same population (Maunder, 2004; Schaub and

Abadi, 2011; Dorazio, 2014). These two conditions are usually

fulfilled by the encounter/non-encounter, count, and biomass

datasets collected in the same marine region using random sam-

pling schemes, as the datasets for GOM red snapper employed

later in this study.

To estimate the parameters of our spatio-temporal model, we

used R package “VAST” (Thorson, 2019), whose code and associ-

ated materials are publicly available online (https://github.com/

James-Thorson/VAST). The estimation of fixed effects in VAST is

accomplished via the identification of the parameter values that

maximize the joint likelihood. First, VAST employs the Laplace

approximation implemented by R package “TMB” (Kristensen et

al., 2016) to compute the marginal likelihood by approximating

the integral across all random effects. By employing automatic

differentiation, TMB efficiently computes the matrix of second

derivatives (which the Laplace approximation uses) and the gra-

dient of the Laplace approximation (which is used when fixed

effects are maximized). All random effects are predicted by TMB

through the maximization of the joint likelihood given the maxi-

mum likelihood estimates (MLEs) of fixed effects. We employed

Thorson and Kristensen (2016)’s bias-correction estimator to

correct for the “retransformation bias” when predicting any de-

rived quantity involving a nonlinear transformation of random

effects. We also used the generalized delta method implemented

in TMB to compute the standard errors (SEs) of all fixed and ran-

dom effects and the SEs of derived quantities (Kass and Steffey,

1989).

Demonstration for GOM red snapper
We demonstrate our spatio-temporal model by applying it to red

snapper, a socio-economically important species in the US GOM

(Figure 1). GOM red snapper supports a multi-billion dollar rec-

reational fishing industry, as well as a very large commercial fish-

ery, which has historically been one of the GOM fisheries with the

largest landings (NMFS, 2017). All the data we employed for

GOM red snapper were collected between 2006 and 2014 by

fisheries-independent surveys using random sampling schemes;

the biomass data came from the SEAMAP Groundfish Trawl

Survey (“TRAWL”) dataset (Rester, 2017), the count data from

the National Marine Fisheries Service (NMFS) Pelagic Acoustic

Trawl Survey (“PELACTR”) dataset (Pollack and Ingram, 2014),

and the encounter/non-encounter data from the NMFS Red

Snapper/Shark Bottom Longline Survey (“BLL”) dataset

(Henwood et al., 2006). All surveys and datasets are detailed in

Supplementary Appendix S1.

First, to gauge the population trends predicted by our spatio-

temporal modelling framework, we examined the indices of rela-

tive biomass (henceforth “indices”) and their SEs predicted by a

spatio-temporal model fitted to the combined dataset vs. individ-

ual datasets. We also compared the indices predicted by the

spatio-temporal models fitted to combined and biomass-only

data to the biomass estimates predicted by the latest GOM red

snapper population assessment (SEDAR 52, 2018). Then, to

gauge the patterns of distribution shifts and range expansion/con-

traction predicted by our spatio-temporal modelling framework,

we examined the eastward and northward centres of gravity

(COGs) and effective areas occupied and the SEs of these quanti-

ties predicted by a spatio-temporal model fitted to the combined

dataset vs. individual datasets (see below for calculation). We re-

fer to this scenario where we use all of the original monitoring

data for GOM red snapper as the “base scenario.”

Next, because many fish populations are not adequately sam-

pled compared to GOM red snapper, we repeated the comparison

of the predictions of the spatio-temporal models fitted to com-

bined vs. biomass-only data under two “extreme” scenarios: a

“spatial” scenario, where all the biomass data except for 98% of

those for the NWGOM were considered; and a “temporal” sce-

nario, where all the biomass data except for 98% of those for the

period 2006–2008 were considered. Given that the spatial patterns

of biomass and exploitation of many populations differ greatly

over space (e.g. some GOM snapper and shrimp populations;

Grüss, Perryman, et al., 2018), a severe lack or an absence of

biomass-sampling data for an entire subregion can lead to the re-

construction of very inaccurate population trends if the analysts

rely only on biomass-sampling data. Moreover, a severe lack or

an absence of biomass-sampling data for the early years of a fish-

ery can result in inappropriate baselines upon which to gauge the

status of populations if the analysts make use of only biomass-

sampling data (Pauly, 1995).

For all analyses and the simulation experiment described be-

low, the value of all spatial and spatio-temporal variation terms

defined over a fixed spatial domain X (s 2 X) was approximated

as being piecewise constant, for computational reasons. We speci-

fied 200 “knots” to approximate all the spatial and spatio-

temporal variation terms defined over domain X, such that the

spatio-temporal models tracked the value of these terms at each

knot (Figure 2; Shelton et al., 2014). Thus, the value of a spatial

or spatio-temporal variation term at a given site was established

from the value of the term at the knot that was the closest to that

site. Knot location was decided via the application of a k-means

algorithm to the locations of raw combined data, which allocates

knots spatially with a density proportional to sampling intensity.

After the locations of the 200 knots had been determined, they

were held fixed when model parameters were estimated.

To be able to calculate quantities for GOM red snapper, it was

necessary to produce a two-dimensional spatial grid covering the

spatial distribution range of the fish population, referred to as a

“prediction grid,” as described in Supplementary Appendix S2.

Next, to construct indices for GOM red snapper with the fitted

spatio-temporal models, we assumed that the Gaussian Markov

random field in each cell of the prediction grid for GOM red

snapper was equal to the value of the random field at the closest

knot. Consequently, the surface area Aj (in km2) associated with

knot j was calculated as the number of cells of the prediction grid

for GOM red snapper associated with knot j times the surface

areas of these cells. It was then possible to estimate GOM red

snapper biomass across the US GOM in year t, B̂ tð Þ, as:

Developing spatio-temporal models 1751
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B̂ tð Þ ¼
Xnj

j¼1

Aj � n̂ j; tð Þ � ŵ j; tð Þ; (7)

Ultimately, the indices for GOM red snapper were obtained by

dividing the B̂ tð Þ estimates by their mean value over the period

2006–2014. This definition of indices of relative biomass is very

often used by fisheries scientists, as it facilitates a rapid interpreta-

tion of trends in relative biomass (Grüss, Walter, et al., 2019).

The fitted spatio-temporal models were also employed to esti-

mate eastward and northward COGs and effective area occupied.

Eastward COG in year t, ECOG tð Þ, is computed as follows

(Thorson, Pinsky, et al., 2016):

ECOG tð Þ ¼
Xnj

j¼1

xj

Aj � n̂ j; tð Þ � ŵ j; tð Þ
B̂ j; tð Þ

)8<
: (8)

where xj is the value of eastings (in km) in knot j. Northward

COG in year t, NCOG tð Þ, is calculated in a similar way, except

that xj is replaced with yj , the value of northings (in km) in knot

j, in Equation (8). Finally, the effective area occupied is estimated

by dividing the estimated biomass [given by Equation (7)] by the

average biomass-density. The average biomass-density in year t,

D tð Þ, is computed as follows (Thorson, Pinsky, et al., 2016):

D tð Þ ¼
Xnj

j¼1

n̂ j; tð Þ � ŵ j; tð Þ
Aj � n̂ j; tð Þ � ŵ j; tð Þ

B̂ j; tð Þ

)8<
: (9)

Simulation experiment
We also used the “bootstrap simulator” included in R package

“VAST” (Thorson, 2019) to evaluate the accuracy, error, and con-

fidence interval coverage of the indices predicted by the spatio-

temporal model fitted to combined data, under “spatial” and

“temporal” scenarios. Conditional on the MLE for fixed effects

estimated for GOM red snapper, new random effects and new

data were simulated, and it was then possible to fit the new data

to the spatio-temporal model again and to compare the estimated

indices to the “true” indices of relative biomass. Here, the spatial

scenarios consisted of either collecting or not collecting biomass

data in the NWGOM, while the temporal scenarios consisted of

either collecting or not collecting biomass data in early years (i.e.

over the period 2006–2008). Under the temporal scenario where

biomass data were not collected in early years, it was necessary to

constrain intercepts bw to follow a random walk across years to

allow intercepts to be estimated in years with no biomass-

sampling data (Thorson, 2019). Under the spatial scenarios, we

also compared the performance of spatio-temporal models fitted

to combined vs. biomass-only data; this was not possible under

the temporal scenarios, where biomass data were available for

only 6 years (vs. 9 years for combined data).

Figure 1. Map of the GOM. Important features are labelled and include: the NWGOM, the Florida Panhandle, the West Florida Shelf, the Dry
Tortugas (a), and the Florida Keys (b). Depth contours are labelled in 20-, 40-, 60-, 80-, 100-, 200-, and 1000-m contours. MS, Mississippi; AL,
Alabama. The black dashed-dotted line delineates the US exclusive economic zone.

Figure 2. Spatial distribution of the “knots” used by the spatio-
temporal models fitted to combined (i.e. encounter/non-encounter
plus count plus biomass) data for GOM red snapper (L.
campechanus). Knots serve to approximate all the spatial and spatio-
temporal variation terms defined over the study spatial domain,
such that spatio-temporal models track the value of these terms at
each knot.
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We considered 100 replicates for each scenario in this experi-

ment. We evaluated three performance metrics, which are de-

scribed in Supplementary Appendix S2: a metric of bias showing

whether changes in the true index of relative biomass are accu-

rately estimated (the closer to 1 the better; Thorson et al., 2015);

root mean squared error (the lower the better; Stow et al., 2009);

and coverage for a 50% confidence interval (henceforth

“coverage”; the closer to 50% the better; Bolker, 2008).

Results
Demonstration for GOM red snapper
The TRAWL biomass dataset provided the largest number of data

points (6358 samples across the 9 years). Combining BLL

encounter/non-encounter and PELACTR count data with

TRAWL biomass data increased the number of data points to

8687 (i.e. by �36.6%; Supplementary Figure S3). The spatial foot-

prints of the TRAWL, BLL, and PELACTR programs were rela-

tively similar (Figure 3a–h). However, the PELACTR program

operated in deeper waters than the TRAWL program, while the

BLL program sampled areas that were not monitored by the

TRAWL program, including untrawlable sites off West Florida.

The spatial distribution of GOM red snapper predicted by the

models fitted to individual datasets (i.e. encounters/non-

encounters, counts, or biomasses) were comparable (Figure 3i–

k). These models all predicted red snapper to be mainly distrib-

uted on the shelves of Texas, Louisiana, Mississippi, and

Alabama; to have a higher probability of encounter or higher

abundance/biomass in the Florida Panhandle region than on the

West Florida Shelf; and in its southernmost distribution areas

(i.e. off Southwestern Florida), to be concentrated near the Dry

Tortugas and the Florida Keys, at depths ranging between 20 and

60 m. The model fitted to combined data provided similar

insights into red snapper spatial distribution patterns (Figure 3l

and Supplementary Figure S4).

The models fitted to biomass-only or combined data predicted

comparable indices, COGs and effective areas occupied

(Figure 4a–d). Both models predicted no overall change in red

snapper index over the period 2006–2014 (Figure 4a). However,

TRAWL biomass data are also available for 2015, and models fit-

ted to biomass-only or combined data for the period 2006–2015

predicted an overall increase in red snapper index over the period

2006–2015, consistent with the relative biomass estimates from

the latest GOM red snapper assessment (Figure 4a). Moreover,

the models fitted to biomass-only and combined data both pre-

dicted that red snapper COG moved both westward and south-

ward over the period 2006–2014 (Figure 4b and c) and that red

snapper distribution contracted from 2006 to 2011 (i.e. a decrease

in effective area occupied) and then expanded from 2011 to 2014

(Figure 4d).

Using combined rather than biomass-only data reduced the

log-standard error (log-SE) of the index and the SE of eastward

COG and, overall, very slightly decreased the SE of northward

COG and very slightly increased the log-SE of effective area occu-

pied (Table 1 and Figure 4e–h). Moreover, maps of the log-SEs of

red snapper biomass revealed that employing combining data re-

duced the log-SE of biomass in most of red snapper distribution

areas, particularly off West Florida and in the deepest areas of the

NWGOM shelf (Figure 5a and Supplementary Figure S5). On av-

erage over all years, using combined data decreased the log-SE of

biomass in 65.3% of red snapper distribution areas.

Looking at the log-SEs of the indices predicted by models fitted

to different combinations of encounter/non-encounter, count,

and biomass data, it appears that the reduction of the log-SE of

the index is due to the addition of encounter/non-encounter data

to the dataset provided to VAST (Supplementary Figure S6). The

log-SE of the index is greater when VAST is provided with count

data or a combination of count and biomass data than when

VAST is provided with a combination of encounter/non-

encounter and biomass data or combined data. We then exam-

ined the fixed parameters estimated by the spatio-temporal mod-

els and their SEs. This revealed that the increase in the log-SE of

the index due to count data stems from large changes in the year

effects bn and an important increase in the SE of these year effects

(Supplementary Figure S7).

We now examine a “spatial” scenario, where all the biomass

data except for 98% of those for the NWGOM are considered.

Under the spatial scenario, the models fitted to biomass-only or

combined data keep providing similar insights into the spatial

distribution patterns of red snapper (Supplementary Figure S8).

The decrease in the log-SE of the index and the SEs of the east-

ward and northward COGs, as well as the increase in the log-SE

of effective area occupied, due to the substitution of biomass-

only with combined data, are much more pronounced under the

spatial than under the base scenario; this is particularly true for

the SEs of the eastward and northward COGs (Table 1 and

Figure 6a–d). Moreover, using combined data still leads to a re-

duction in the log-SE of biomass in most of red snapper distribu-

tion areas (Figure 5b and Supplementary Figure S9). This

reduction is more pronounced under the spatial than under the

base scenario (occurs in 73.7% of red snapper distribution areas

on average over all years under the spatial scenario vs. 65.3% un-

der the base scenario).

Next, we examine a “temporal” scenario, where all the biomass

data except for 98% of those for the period 2006–2008 are consid-

ered. Under the temporal scenario, the models fitted to biomass-

only or combined data keep providing similar insights into the

spatial distribution patterns of red snapper (Supplementary

Figure S10). The decrease in the log-SE of the index and the SEs

of the eastward and northward COGs due to the substitution of

biomass-only with combined data are less pronounced under the

temporal than under the base scenario (Table 1 and Figure 6e–g).

However, the increase in the log-SE of effective area occupied due

to the use of combined data in lieu of biomass-only data is

slightly more pronounced under the temporal than under the

base scenario (Table 1 and Figure 6h). Finally, employing com-

bined data still leads to a reduction in the log-SE of biomass in

most of red snapper distribution areas (Figure 5c and

Supplementary Figure S11). This reduction is much more pro-

nounced under the temporal than under the base scenario (occurs

in 90.1% of red snapper distribution areas on average over all

years under the temporal scenario vs. 65.3% under the base

scenario).

Simulation experiment
We also explored spatial and temporal scenarios within a simula-

tion experiment, where biomass data were, respectively, either

collected or not collected in the NWGOM and either collected or

not collected in early years. Depending on the replicates consid-

ered, the model fitted to combined data produced indices that

matched the “true” indices very well (Figure 7a–d) or not
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(Figure 7e–h). Not collecting biomass data in the NWGOM or in

early years generally resulted in more negatively biased and more

imprecise indices; results in terms of bias were more pronounced

under the temporal than under the spatial scenario, while the op-

posite was true for results in terms of error (Figure 8a–d). Under

both the temporal and spatial scenarios, models fitted to com-

bined data had reasonable coverage (Figure 8e and f). Under the

spatial scenarios, we also conducted a comparison of the perfor-

mance of spatio-temporal models fitted to combined vs. biomass-

only data. This comparison revealed that the indices produced by

models fitted to biomass-only data are often less biased than

those produced by models fitted to combined data, although the

models fitted to biomass-only and combined data have compara-

ble error and coverage (Figure 9).

Discussion
This study confirmed earlier IPM studies that combining multiple

data types (i.e. using data-integrated models) is overall beneficial

to ecological investigations. A diversity of data types, including

encounters/non-encounters, counts, biomasses, and others, are

collected in the marine environment (Grüss, Perryman, et al.,

2018), and combining these different data types is straightforward

and can be achieved if: (i) the different datasets considered were

collected separately; (ii) the likelihoods for individual datasets

have parameters in common; and (iii) the individuals included in

these different datasets can be assumed to belong to the same

population. The three aforementioned conditions will very often

be fulfilled with “unmarked” data types such as surveys (Schaub

and Abadi, 2011; Zipkin et al., 2017).

The spatio-temporal model fitted to combined data provided

insights into red snapper spatial distribution patterns in the US

GOM, which were similar to the insights from an earlier spatio-

temporal model fitted to multiple encounter/non-encounter

datasets (Grüss, Perryman, et al., 2018) and a generalized linear

model fitted to multiple count datasets (Karnauskas et al., 2017).

However, relying on biomass and count data in addition to

encounter/non-encounter data in this study allowed us to provide

more information for population and habitat assessments. First,

we were able to reconstruct indices of relative biomass for GOM

red snapper population assessments. Then, we produced informa-

tion on red snapper COGs and effective area occupied for habitat

assessments. We found that, over the study period (2006–2014),

the COG of red snapper moved both westward and southward,

while its effective area occupied decreased between 2006 and 2011

and then increased between 2011 and 2014. To our knowledge,

this was the first time that patterns of distribution shifts and

Figure 3. Spatial distribution of the (a, b) encounter/non-encounter, (c, d) count, (e, f) biomass, and (g, h) combined (i.e. encounter/non-
encounter plus count plus biomass) data for GOM red snapper (L. campechanus), and (i–l) average spatial predictions over the period 2006–
2014 made with spatio-temporal models fitted to these data (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.).
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range expansion/contraction were examined for GOM red snap-

per, despite the strong socio-economic importance of this fish

population. It is important to note that changes in COGs can be a

product of no actual movement, but can rather be due to differ-

ent spatial patterns of mortality and recruitment; regardless, the

westward and southward shift of GOM red snapper COG be-

tween 2006 and 2014 reflect biomass trajectories in the eastern

US GOM (flat and decreasing) vs. western US GOM (sharply in-

creasing) estimated in the latest GOM red snapper population as-

sessment (SEDAR 52, 2018).

However, while our study delivered useful information for

GOM red snapper population assessments, we recommend future

studies to consider a longer time period. In this study, we used 9

years of data collected by three fisheries-independent programs

(the TRAWL biomass, the PELACTR count, and the BLL

encounter/non-encounter datasets) that can be shared publicly

(https://figshare.com/articles/Red_snapper_dataset/7451276). Yet, a

large number of fisheries-independent and fisheries-dependent

datasets (of which many are confidential) can provide biomass,

count, and encounter/non-encounter data, which can be employed

to reconstruct patterns of spatial distribution, distribution shifts,

range expansion/contraction, and relative biomass for GOM red

snapper since the early 1980s (Grüss, Perryman, et al., 2018). This

endeavour is desirable, given that changes in GOM red snapper

biomass were more pronounced from the early 1980 to the

present than over the short time period considered in this study

(2006–2014) (SEDAR 52, 2018).

When working with the original dataset for GOM red snapper

(i.e. under the base scenario), using combined rather than

biomass-only data decreased the SEs of the index and the COGs,

as well as the log-SE of biomass in most of red snapper

distribution areas, particularly in those areas poorly or not sam-

pled by the TRAWL biomass dataset. Substituting biomass-only

data with combined data also led to an increase in the log-SE of

effective area occupied, although this increase was very small

(þ2%). Thus, overall, this study concurs with IPM studies, which

showed that combining data resulted in more precise estimates of

demographic quantities (Brooks et al., 2004; Schaub et al., 2007;

Abadi et al., 2012; Dorazio, 2014; Zipkin et al., 2017). However,

we were expecting a larger reduction in the log-SE of the index

than the one found in this study (�9.7%). This reduction was

due to the combination of biomass and BLL encounter/non-

encounter data. The PELACTR count data did not contribute to

decreasing the log-SE of the index, because they greatly altered

the year effects on numbers-density (bn parameters) and greatly

reduced the precision of these year effects. Therefore, we conclude

that data-integrated models will not inevitably result in substan-

tially increased precision, and we recommend that future studies

explore results for each candidate encounter/non-encounter and

count dataset individually, as a preliminary diagnostic to identify

which dataset could contribute to noticeable changes in estimated

precision.

We chose to analyse data for GOM red snapper for the period

2006–2014 to ensure that all data types were available across the

entire spatial domain for all years. In the real world, we suspect

that many monitoring programs collecting the different data

types may not cover or may poorly cover some subregions of the

geographic area of interest. These scenarios reflect the situation

of, e.g. some snapper and grouper populations such as the GOM

populations of cubera snapper (Lutjanus cyanopterus) and goliath

grouper (Epinephelus itajara) (Grüss, Biggs, et al., 2018).

Moreover, for many fish and invertebrate populations and life

Figure 4. Predictions of the spatio-temporal models fitted to biomass-only data (full grey lines) or combined (i.e. encounter/non-encounter
plus count plus biomass) data (dashed black lines) for GOM red snapper (L. campechanus). (a) Indices of relative biomass and (e) their log-SE.
(b, c) COGs of red snapper (km) and (f, g) their SE (km). (d) Log-effective areas occupied by red snapper [ln(km2)] and (h) their SE [ln(km2)].
In (a), the relative biomass estimate from the latest GOM red snapper population assessment (SEDAR 52, 2018) is also provided (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.).
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stages, biomass data are unavailable for early years in a time se-

ries, while other datasets (e.g. count datasets) cover these early

years. Thus, we also examined spatial and temporal scenarios,

where red snapper biomass data were very poorly or not sampled

in an entire subregion or in early years. Under the spatial scenar-

ios, employing combined rather than biomass-only data substan-

tially reduced the SEs of the index and the COGs, while still

increasing the log-SE of effective area occupied. Under the tem-

poral scenarios, using combined rather than biomass-only data

offered reduced benefits compared to the spatial scenarios and, to

a lesser extent, the base scenario. As expected, when no biomass

data were collected in an entire subregion, the spatio-temporal

model fitted to combined data predicted more biased and more

imprecise indices. Under the temporal scenarios, the spatio-

temporal model fitted to combined data resulted in more biased,

but more precise, indices than under the spatial scenarios. Yet,

under both the spatial and temporal scenarios, a spatio-temporal

model fitted to combined data also had reasonable coverage, i.e.

confidence intervals that were not too narrow nor too wide and,

thus, represented uncertainty adequately.

We envision three avenues for future research. First, future

studies should consider additional data types, particularly those

collected by opportunistic surveys that are the primary source of

data for many populations, such as binned counts (e.g. collected

for GOM goliath grouper by the Reef Environmental Education

Foundation Fish Survey; Thorson et al., 2014) or maximum

school sizes (e.g. collected for Indo-Pacific elasmobranchs by rec-

reational scuba divers; Ward-Paige and Lotze, 2011). Presence-

only data are also the main source of data for many populations

(e.g. habitat-forming invertebrate populations; Vierod et al.,

2014; Guinotte et al., 2017). However, working with presence-

only data is running the risk of mistakenly identifying areas that

are well monitored as high-density areas (Fithian et al., 2015).

Therefore, we recommend future studies using our modelling

framework and presence-only data to: (i) generate pseudo-

absences (e.g. by recovering transect information or by selecting

at random within the region covered by the presence data at least

one order of magnitude more pseudo-absences than presences;

Grüss, Drexler, et al., 2019) so as to work with presence/pseudo-

absence data; and (ii) expand our data-integrated model in the

case of presence/pseudo-absence data so as to account for moni-

toring intensity and the covariates influencing this process

(Fithian et al., 2015). Second, our modelling framework should

also be employed to support climate-vulnerability and ecosystem

assessments. For example, relevant environmental covariates

could be introduced in the state-process equations [Equation

(5)], and the model fitted to combined data could then be used

to forecast spatial distribution patterns and population trends in

Figure 5. Comparison of the average log-SEs of GOM red snapper
(L. campechanus) biomass over the period 2006–2014 predicted by
the spatio-temporal model fitted to biomass-only data and those
predicted by the spatio-temporal model fitted to combined (i.e.
encounter/non-encounter plus count plus biomass) data, under the
(a) “base,” (b) “spatial,” and (c) “temporal” scenarios. A positive
(negative) difference indicates that using combined data in lieu of
biomass-only data increased (decreased) the log-SE of red snapper
biomass locally. In the base scenario, all biomass data were
considered. In the spatial scenario, all the biomass data except for
98% of those for the NWGOM were considered. In the temporal
scenario, all the biomass data except for 98% of those for the period
2006–2008 were considered (For interpretation of the references to
color in this figure legend, the reader is referred to the web version
of the article.).

Table 1. Changes (in %) in some of the SEs predicted by spatio-temporal models for GOM red snapper (L. campechanus) under the “base,”
“spatial,” and “temporal” scenarios when these models are fitted using encounter/non-encounter, count, and biomass data instead of just
biomass data.

Base scenario, % Spatial scenario, % Temporal scenario, %

Change in the log-SE of the index of relative biomass �9.7 �12.9 �6.3
Change in the SE of the eastward COG �10.3 �29.8 �8.1
Change in the SE of the northward COG �1.1 �26.6 �0.9
Change in the log-SE of effective area occupied þ2.0 þ9.6 þ4.5

In the base scenario, all biomass data were considered. In the spatial scenario, all the biomass data except for 98% of those for the NWGOM were considered. In
the temporal scenario, all the biomass data except for 98% of those for the period 2006–2008 were considered.
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Figure 6. Predictions of the spatio-temporal models fitted to biomass-only data (full grey lines) or combined (i.e. encounter/non-encounter
plus count plus biomass) data (dashed black lines) for GOM red snapper (L. campechanus), under the (a–d) “spatial” and (e–h) “temporal”
scenarios. (a, e) Log-SE of the indices of relative biomass. (b, c and f, g) SE of the COGs of red snapper (km). (d, h) Log-SE of the effective area
occupied by red snapper [ln(km2)]. In the spatial scenario, all the biomass data except for 98% of those for the NWGOM were considered. In
the temporal scenario, all the biomass data except for 98% of those for the period 2006–2008 were considered.

Figure 7. Some of the indices of relative biomass estimated by spatio-temporal models fitted to combined (i.e. encounter/non-encounter
plus count plus biomass) data under the (a, c, e, g) “spatial” and (b, d, f, h) “temporal” scenarios tested within the simulation experiment. In
the spatial scenarios, the “fully sampled population” is a population for which biomass data are collected all over the US GOM, while the
“partially sampled population” is a population for which biomass data are not collected in the NWGOM. In the temporal scenarios, the “fully
sampled population” is a population for which biomass data are collected in all years, while the “partially sampled population” is a population
for which biomass data are not collected over the period 2006–2008.
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response to climate change (Thorson, 2018b). Third, we recom-

mend that future research utilizes our modelling framework

within a simulation experiment for monitoring program optimi-

zation, whereby a spatio-temporal model is fitted to combined

data to produce simulated sampling data under alternative sam-

pling designs. Each simulated dataset would then be tested, and

the average performance of each sampling design would be evalu-

ated to ultimately identify sampling designs that provide an opti-

mal utilization of available resources (Reich et al., 2018; Thorson,

2019).

In conclusion, the ability to fit spatio-temporals model to dif-

ferent data types is valuable for assisting the diverse assessments

that fisheries scientists are tasked carrying out, and we recom-

mend future studies to further explore the performance of our

modelling framework, particularly for populations and life stages

lacking biomass data for entire subregions and/or time periods.

Importantly, our modelling framework may, at long last, allow

for the reconstruction of population trends for numerous data-

poor, yet socio-economically important populations and, conse-

quently, for more elaborated stock assessments and management

measures for these populations (e.g. many snapper and grouper

populations of the US GOM; Grüss, Biggs, et al., 2018; Grüss,

Perryman, et al., 2018). Moreover, the maps of relative biomass

produced with our modelling framework for critical life stages

Figure 8. (a, b) Bias (the closer to 1 the better), (c, d) root mean squared error (the lower the better), and (e, f) coverage (in %; the closer to
50% the better) of the indices of relative biomass estimated by spatio-temporal models fitted to combined (i.e. encounter/non-encounter
plus count plus biomass) data under the (a, c, e) “spatial” and (b, d, f) “temporal” scenarios tested within the simulation experiment. In the
spatial scenarios, biomass data were either collected or not collected in the NWGOM. In the temporal scenarios, biomass data were either
collected or not collected in early years (i.e. over the period 2006–2008).
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(e.g. young-of-the-year, spawners) will provide robust insights

into the location of biomass hotspots for these critical life stages

and, subsequently, will enable more effective protection of essen-

tial fish habitat (Laman et al., 2018).

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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